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Isotropic spin-1 chains with bond alternation: analytic and 
numerical studies 
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Department of Physics, Universiy of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan 

Received 3 January 1995. in final form 23 March 1995 

AbslracL Isompic spin-l chains with band alternation are studied. Analytic (both varlational 
and pemrbative) results are presented A phase transition is found Lo separate the S = 1 
Haldane phase and the dimer phase. The critical point is numerically determined using the 
Binder parameter. The univenaliry class is predicted to be given by the level-1 SU(2) Wess- 
Zuminc-Witten model, and this prediction is supported by the present exact diagonalization 
study. The dimer phase is found Lo be connected to the ‘S = 2’ Haldane phase in a special 
limit. The change of the excitation spectra and the suing order W t e r  with bond alternation 
is discussed. 

1. Introduction 

In 1983, Haldane [1,2] predicted that the Heisenberg chain with integral spins has a 
disordered ground state above which a finite excitation gap opens, while the half-odd- 
integral chain has a critical ground state with a gapless excitation. Since the latter 
seems to be plausible in view of both naive spin-wave theory and the exact solution for 
S = 1/2 131, much effort was devoted (see, for example, 141) to understanding the novel 
massive behaviour of the integer3 chain even after his prediction was confinned both 
numerically [5,6] and experimentally [7-91. 

One approach may be to understand the spin-2S Heisenberg model as a special limit of 
the spin-S case. Consider the spin4 Heisenberg chain with bond alternation: 

‘H( J‘) = Szj - Szj+i + J‘ c Szi-I . Szi. 
j i 

For convenience, the strength of the exchange interaction of the fist term has been set to 
unity. For J’ = 1, it reduces to the ordinary Heisenberg antiferromagnet. On the other 
hand, when we take the limit J‘ + -eo, each spin pair of the neighbouring sites (2i - 1,Zi) 
is coupled ferromagnetically, and the model reduces to (within the first-order perturbation 
theory for the degenerate ground state) the spin-2S Heisenberg chain. Hida [lo] developed 
such an idea for the S = l/2 case and showed that the dimer phase of the S = 1/2 
chain is smoothly connected to the S = 1 Haldane phase without any phase transition (see 
also [ l l ,  121 for studies in this direction). This indicates that the (S = 1) Haldane phase can 
be interpreted as a special limit of the S = 1/2 dimer phase. From this viewpoint the S = 1 
case of the Hamiltonian (1) would be interesting, since the point J’ = 1 (no alternation) 
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belongs to the S = I Haldane phase, while the limit J' + -m is considered to be in the 
S = 2 Haldane phase. If an essential equivalence between the S = 1 dimer phase and the 
S = 2 Haldane phase is confirmed, we can conclude that the S = 1 Haldane phase and the 
S = 2 phase are different; there is a phase transition (discussed below in detail) between 
the two phases. 

It may be of interest to study the Hamiltonian (1) from the point of view of 
the dimerization transition 113,141. Using a field-theoretical argument, Affleck and 
Haldane [15,16] predicted that second-order transitions occur 2 s  times when we vary J'  
from J' = +w to J' = 0. On the other hand, Guo and co-workers [14] discussed the 
problem by means of a numerical calculation and a physical argument, and concluded that 
the situation is different for S E Z and S E Z + 1/2 in (1). That is, the transitions occur 
at non-zero values of J' for integer S, while the ground state is partially or completely 
dimerized by infinitesimal alternation for half-odd-integer S. Hence we would like to locate 
precisely the (non-zero) transition point and clarify the nature of the critical point for the 
smallest integral S. 

The present paper is organized as follows. In section 2, we perform a simple variational 
calculation for the Hamiltonian 

'H = f~(S7.i . & + I )  + J'cffi(szi-1 . Szj) (2) 
i i 

where the choice of the second-order polynomial f&) = x - p x 2  is generic for isotropic 
spin-1 chains with a nearest-neighbour interaction. When the bond alternation is absent, 
exact (and rigorous) results are available for the following four cases: p = -1 [17,18], 
,9 = -1j3 [19]. ,9 = 1 [20,211, and p + m [22,231. 

Decreasing the value of J' from one to zero, we expect a phase transition From the 
S = 1 Haldane phase to the dimer phase (provided that p z -1/3). Using the result of 
our variational calculation, we obtain a crude estimate of the phase boundary beyond which 
the string order parameter [24,25] vanishes. A pembative estimate of the spectrum near 
J' = 0 is also given. 

Section 3 is devoted to a detailed discussion of the Haldane-dimer transition. First, we 
determine the critical point of the Haldane-dimer transition for the Heisenberg point (j3 = 0) 
numerically by means of exact diagonalization. Owing to the smallness of available system 
sizes, it is not easy to determine the critical point by the excitation gap. To circumvent this 
difficulty, we used the finite-size scaling of the Binder parameter. In ordinary cases, the 
Binder parameter with respect to a certain order measured by a local operator (for example, 
the ferromagnetic order) is used for order-to-disorder transitions. In our case, on the other 
hand, such a local order parameter vanishes on both sides of the critical point, and hence 
the transition is a disorder-to-disorder one in this sense. However, if we use the non-local 
string order parameter, this method works. The intersection of the Binder parameter for 
several system sizes yields J: = 0.595 & 0.01 0. I t  is also argued that the gap does not close 
in the region J' c 0. This implies that the S = 1 dimer phase and the S = 2 Haldane phase 
are smoothly connected. 

Then, with combined use of several arguments, we predict that the universality class is 
the same as that of the level-1 SU(2) Wess-Zumin-Witten (wnv) model. This is confirmed 
by numerical calculations. Since it is difficult to extract precise values of exponents from 
numerical data for system sizes up to L = 16, we used the excitation spectrum at the critical 
point to compare with the cm predictions. Our main results are given in this section. 

In section 4, we compute several critical exponents to compare with the analytical 
prediction. Our numerically estimated values are given as follows: the exponent for the mass 
gap U = 0.75 f0.05, the correlation exponents q ~ k l =  0.70f0.10 and q s ~ i n g  = 0.25 fO.05. 
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We numerically study the qualitative change in the spectral property and the string order 
parameter in section 5. A brief discussion about the difference in the elementary excitation 
between the critical point and other points is also given. 

2. Analytic treatment of the Haldane-dimer transition 

In this section, we describe a simple variational treatment of the Haldane-dimer transition 
and give a qualitative phase diagram. A perturbative &mate of the excitation specmun 
near J' = 0 is also presented. 

First we briefly recapitulate the field-theoretic prediction by Affleck and Hal- 
dane [IS, 161. Their argument exploits the large3 mapping to the O(3) non-linear sigma 
model. Applying the method used in [15] to the Hamiltonian (2), we obtain the O(3) 
non-linear sigma model with the lI2-topological term 

with g = (1 + J')/1/JiS and e,,,, = 4 ~ S / ( 1 +  1'). If the O(3) non-linear sigma model with 
e,, = n (mod 2n) represents a massless theory, we have S massless points in the interval 
0 < J' < 1. Hence in OUT S = 1 case, there is a single second-order transition in that 
region. ?tanslating the system by one site and replacing J' by 1]J', the same argument is 
also applicable to the case J' > 1. However, since the above expression for Sop does not 
include ,9, we cannot predict the ,9 dependence of the critical values [JL}. 

In order to see the ,9 dependence of JL, we perform a simple variational calculation. In 
constructing a variational wavefunction for our Hamiltonian (2), we have to keep in mind 
the following two points. (i) The ground state is a singlet state. This can be rigorously 
proved around the bilinear point (p Fs 0) [26]. (ii) The ground state smoothly interpolates 
the valence bond solid (vBS) state [19] (,9 = -1/3, J' > 0) and the dimer state (,9 > -1/3, 
J'  = 0). The simplest choice satisfying the above requirement may he 

The above two states (VBS) and \dimer) are compactly written as matrix products [27,281: 

IVBS) =Trgl @gz@...@ggl 

with 

and 

with 
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Since the overlap 

(dimerlms) 
lldimerll IIvBsII 

decreases exponentially with system size, i.e. (-l/&'/'), this trial state (4) is normalized 
correctly in the infinitevolume limit. Using the matrix formalism [28], the quantity 

can he evaluated straightforwardly. The result is given by 

e(Q) = -[[$(l+ 5')(2+3p) - $ P J ' -  1  COS^@+ ( f P J ' +  1 +28)]. (6) 

Minimization of this quantity yields the variational solution Itrial; 0 = 0) for J' > JC and 
Itrial; 0 = n/2) for J' < J:. The critical value gives the transition line 

In deriving the second value of JC, we have used the symmehy under J' + I / J ' .  We show 
the phase diagram in figure 1. In our calculation, the transition occurs from the perfect VBS 
phase to the perfect dimer phase. Of course, this is not the true situation. In particular, 
at the Heisenberg (p  = 0) point, the Haldane-dimer @ansition occurs at J' = 0.5. It 
is to be compared with the previous estimates of J,' - 0.6 (by Singh and Gelfand [29]) 
and 0.6 (by Kat0 and Tanaka [30]). Within our simplest approximation, the spontaneous 
dimerization occurs along the line J' = 1, p > 1/2. It i s  believed that the end point 
of the spontaneous-dimerization line is located at the Takhtajan-Babudjian point (J '  = 1, 
6 = 1) [31] and hence our analysis underestimates the true value. However, we expect that 
our phase diagram obtained by the simplest approximation is qualitatively correct. 

;J 

Figure 1. The phase diagram obtained 
on the basis of the variational wavefunc- 
tion of section 2, The fuU curves indi- 
cate the phase bounday. The VBS state is 
the exad ground stln on the chain line. 

-1  -0.6 0.5 1 1.5 Also plotted nre (i) the AKLT point, (ii) 
the S = 1 Heisenberg (HAFM) point, and 
(U) the Takhbjan-Babujian (m) point P 
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To conclude this section, we investigate the Haldane-jimer transition from the viewpoint 
of the excitation spectrum. Since the Hamiltonian does not allow an exact solution, only 
restricted pieces of information are available by analytic methods. One of them is the 
(approximate) excitation spectrum near the dimer point (J' = 0, 6 > -1/3). 

For J' = 0, the model is trivial; we readily find that the first excited states are obtained 
by replacing one of the valence bonds by a triplet bond (i.e. 'crackion' [28,32]). It has spin- 
1 and is N(= L/2)-fold degenerate positionally. If we turn on the exchange interaction J', 
the triplet bond made by breaking a singlet valence bond can hop to the neighbouring l i  
with an amplitude proportional to J'. We treat this effect using the degenerate perturbation. 
The calculation is straightforward and we obtain the following dispersion relation of the 
triplet (S = 1) excitation: 

(8) 

where the momentum k runs between - x / k  and n / k .  Note that the shape of this spectrum 
is the same as that of the approximately obtained spectrum of the S = 1 VBS model [33] 
by means of the single-mode approximation. Furthermore, such excitations can be created 
by the action of a magnon operator S(k) (the Fourier transform of Si) just as in the VBS 
case [28,34]. 

The shape of s ( q )  given by (8) is different qualitatively for J' z 0 and J' < 0. 
For J' > 0 (the antiferromagnetic region), the excitation gap (38 + 1) - (2 /3)J '@ + 2) 
exists at k = 0. On the other hand, for J' < 0 (the ferromagnetic side) it opens at 
k = x ,  and the spectrum is of VBS type. Intuitively, the site-wise short-range AP order 
(for example, . . . , 1, -1, 1, -1, 1, -1, . . .) changes into a pair-wise one (for example, 
._.,  l , l , - l , - l , l , l , - l , - l ,  ... ) a t  J ' = O .  

The gap (at k = 0) on the AF side decreases as J' increases and we expect that it 
vanishes at some value of J'. This is the Haldandimer transition. If we determine the 
transition point where the gap vanishes, we obtain 

E(k) = (38 + 1) - $ J'(j3 + 2) cos k 

J : ( B ) = - ( - ) .  3 3 8 f 1  
2 8 + 2  

However, o w  perturbative calculation may not be reliable at such a large value as the gap 
collapses. 

3. Determination of the critical point and analysis of the critical point 

In this section, we determine precisely the critical point of the Haldanedimer transition for 
the system (I), or the 8 = 0 case of the generic model (2). In doing this, we made use of 
the finitesize scaling of the Binder parameter. Then, using these results, we analyse the 
excitation spectrum for the critical point to compare it with the cm prediction made below. 
The exact diagonalization was performed for system sizes up to L = 16 using the Lanczos 
method. 

In estimating the critical point, we employ two types of methods. One concerns the 
finite-size scaling behaviour of the first excitation energy, while the other adopts the Binder 
parameter defined with respect to the string order. 

The critical point is determined as follows. The first-excitation energy obeys the 
following finite-size scaling relation: 
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where the quantity 5 denotes the correlation length. Since 5 diverges at the critical point, 
the dimensionless quantity LAE(L)  is independent of the system size L. In figure 2, we 
plot LAE(L) as a function of the parameter J' for various system sizes. Around the region 
J' % 0.6, we see that there might be a critical point Jk and that no further phase transition 
occurs in the region J' < 0 as well as in the region 0 < J' < JC. Thus we conclude that the 
ground state of the dimer system J' M 0, and that of the S = 2 Heisenberg chain appearing 
in the limit J' -+ -w belong to the same unique phase. This is similar to the situation for 
the S = 1/2 case [IO] of (1). 

x: L=4 
0 :  L=6 
0: L=8 
9 :  L=10 

20 

0 " " " " " " " " " " " "  
0 0.2 0.4 0.8 0.8 1 

J 

3.6 

n 

w 3.0 
4 
v 

a 
&! 

2.5 

2.0 

I 5 10 50 100 

- J' 
Figure Z The scaled energy gap, LAE(L) ,  with "wing J'. (a) J' > 0 and (b) J' < 0. 

For a more precise estimate of the critical point J,'. we introduce the Binder 
parameter [35-371 

(04) U ( L ,  J )  = 1 - - 
3(02)*' 
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Here we define the order parameter 0 in the following form 

L j -1 

j = l  ( k=l 
o = C O ~  0, = exp in C S ~  S; 

with respect to the string correlation. It is well known that there exists a long-range string 
order 

at least at the Heisenberg point J' = 1. The main idea of our method is as follows. 
Usually, the Binder parameter is used for transitions that separate the ordered phase from 
the disordered one. On the other hand, in the Haldanddimer transition, both sides of the 
transition point are disordered in the o r d i n q  sense and hence a naive application of it 
based on local order parameters does not work well. However, it can be proven 1381 that 
the string order actually vanishes around the dimer line J' E 0. Assuming that the string 
order vanishes in the region J' < JL as well, the Haldane-dimer transition can be regarded 
as a kind of order-to-disorder transition with respect to the string order. Thus the Binder 
parameter is applicable. 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 
0 0.2 0.4 0.6 0.8 1 

J' 
Figure 3. The Binder parameter (IO) for L = 4,6, . . . ,I6 with Ihe bond altemation J' varied. 

At the critical point, the Binder parameter is invariant under system size L. In the phase 
where the order parameter 0 is long-ranged (short-ranged), the Binder parameter U ( L ,  J )  
increases (decreases) with increasing N. We plot the Binder parameter for various system 
sizes in figure 3. A co-intersection is found near the point J' M 0.6. This corresponds to 
the critical point above observed in figure 3(a). In figure 4 we plot the approximate critical 
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point J;(L, L + 2) against the inverse of the system size L. We define the approximate 
critical point JL(L, L + 2) by the following relation 

U ( L ,  J,'(L, L + 2)) = U ( L  +2, JL(L, L + 2)). (12) 

From this, we have estimated the extrapolated critical point as 

.I: = 0.595 f 0.010. 

This value is consistent with other studies [29,30]. The fact that the method works well, in 
its turn, proves the validity of our assumption made above. 

1 " " l " " l " " I ' :  
0.61 - 

0.60 - 

cu 
J 0.58 - + , 
J- v :,,',__\_i_i_i 1 - - ,  

0.50 

0.57 

0.2 0.66 
0 0.05 0.15 

l Y ( L + l )  
Figure 4. The approximate critical points JL(L. L + 2) plotted against 1/(L + 1). 

0.2 0.66 
0 0.05 0.15 

l Y ( L + l )  
Figure 4. The approximate critical points JL(L. L + 2) plotted against 1/(L + 1). 

We then proceeded to analyse the excitation spectrum of the model (1) at the critical 
point J' = J,'. We calculated the excitation energy over the ground state for the system 
size L = 16. The energy levels are plotted against momentum for several values of the 
z component of the total spin in figure 5(c). Note that the Brillouin zone is reduced by half 
because of the doubling of the unit cell. In figure 5(c), we can see that the lower edge of 
the spec!" is almost linear for small values of k. This is one of the features of relativistic 
massless theories, and hence we can expect that the low-energy behaviour of the model (1) 
for J'  = JE is described by the two-dimensional CFT. 

There has been some work published concerning the Haldandimer transition. The 
first was that of Affleck and Haldane [15,16]. They argued that alternating spin4 chains at 
their critical point can be mapped onto the O(3) NLuM with OtOp = z in the large4 limit. 
As field-theoretical analyses by several authors [ 16,391 suggest that, in the infrared lit, it 
reduces to the level-1 (k = 1) SU(2) wzw model I40.411 we may expect that the infrared 
effective theory of the critical point is given by the wzw model. As was seen in section 2, 
a defect of this argument is that the critical point JL is independent of 0, in contrast to our 
variational result (7) and the result of the series expansion [29]. 

The second paper concerning the Haldane-dimer transition is a numerical calculation of 
Kat0 and Tanaka [301. With combined use of White's method and the finite-size-correction 
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method, they concluded that the central charge of the Haldane-dimer transition is one. (For 
the central charge evaluated by the quantum Monte Carlo method, see [72].) Note that the 
central charge of the k = 1 SU(2) wzw model is also equal to one. 

Another insight is obtained by mapping our S = 1 model (2) onto the 19-vertex-type 
model with inhomogeneous interactions, which can be viewed as the superposition of the 
king model and the six-vertex model. This is a generalization of the argument developed 
by den Nijs and Rommelse [XI. According to this argument, the six-vertex degrees of 
freedom become critical at the Haldane-dimer transition, and hence the central charge is 
given by unity. Taking into account the SU(2) symmetry, we can expect the universality 
class to be given by the level-1 SU(2) wzw model. 

Let us verify that the massless behaviour observed at J' = JL is indeed the same 
as is expected from the level-1 wzw model. Before describing the details, we briefly 
summarize the necessary facts about the k = 1 SU(2) W z w  model. For further details see, 
for example, [42]. 

It is well known that the k = 1 SU(2) wzw model is realized by a single free boson 9 
(mathematically, such a realization is known as the Frenkel-Kac construction [43]), which 
is governed by the following action: 

1 s = d2~-a, ,~a% s 2x 

The two-dimensional spacetime (u,t) (0 '< U < Zx) is expressed by the light-cone 
coordinate xi = t f U. The boson field 9 takes its value on a circle of radius R, namely 
9 - 9 + ZnR. The compactification radius R canies the information of the original 
(interacting) model. The field 9 (and its dual allows the chiral decomposition 

9(u, t )  = d x + )  + m(x-1 80, t) = rd(x+) - m(x-) 

where %/R are the chiral bosons defined by the following mode expansions: 

and CO(~-)  is obtained by replacing x" + x - ,  N -+ -N. a: + a:. For these operators to 
satisfy the canonical commutation relations, we impose 

[Q, F] = i a,!fI = nA,+,,o. 

Because of the periodicity of 9, the momentum P^ is quantized as M/R.  In the following 
argument, we also use complex coordinates: 

( +  z = em eb-, 

Using z and Z instead of xi, the above mode expansion becomes the formal Laurent series. 
The so-called vertex operator 

V ~ , ~ ( z , i ) = : e x p  21 - + N R  (a(z)+2i - - N R  m(Z) : M , N E Z  (15) CG ) (z"R 1 I 
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2.5 

2.0 

1.5 

1.0 

0.5 

o . o h , ,  , , I , ,  , , , , , , , I A  
0 1 2 3 

k 
Figure 5. The excitation specr" for the system size L = 16 and the parameter (a) J' = 0.2, 
(b) J' = 0.4. (c )  J' = 0.6 and (d)  J' = 0.8. The symbols t. x, o and D stand for levels 
with quanhlm numbers E, S: = 0.1.2 and 3, respectively. The symbols AI-B3 and C are 
defined in the text (see section 3). Thc singlemagnon ('crackion') branch o(k) = 1 - $ J'cosk 
obtained by the penurbation in section 2 is plotted by the dotted cwe. 

(where : . . . : denotes normal ordering) create the primary state with the conformal 
weight [43] 

[ 2 1 M  ( + Ni?)', (" - NR)']. 
2 2R 

In our problem, the quantity M (the U(1)  charge) can be identified with Sir Note that this 
type of primary field corresponds to continuously varying critical exponents [44,45]. At the 
value R = I/&, this model realizes the (su(2) x su(2)-symmetric) wzw model (see [46] 
for a more detailed account for the c = 1 m). 

h h  

The (finite-size) spectrum expected from the wzw CFT 

E = f (M2+ N z )  + NL+ NR P = M N S  NL- NR (17) 
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2.5 

2.0 

h 

v 
3 1.5 
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k 

k 
Figure 5. (Continued) 

(M, N ,  NL,  NR E Z) is given in figure 6 (where we have chosen the units of E and P as 
~ J T V F / L  and 2rr/L, respectively) together with the eigenvalue of the total spin. In the wzw 
model, the spins SL and SR for left- and right-movers are conserved separately. They are 
related to the integers M and N by the following equations: M = $+Si and N = SZ-S:. 
The degrees of degeneracy d ( E ,  P) are easily obtained by expanding the so-called modular 
invariant partition function of the wzw model (see, for example, [46]): 

where 
-2nvlmIlL y = e  2niRerlL x = e  

In-order to know the eigenvalue of S,, SL and SR of each state, we expand another form 
of the partition function [46]: 

Z(X,Y,Z) = K o ~ x Y , z ~ x o ~ ~ / Y , z ~ + x ~ ~ x Y , z ) X ~ ~ x / Y , z )  
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where the quantity x j  is defined by 

2 
'evel-8 

I .  

The coefficient d ( E ,  P, z )  of x E y P  corresponds to the generating function of the multiplicity 
of the states with a given value of Sfat. The eigenvalues (S,,, SL, SR) are also given in 
figure 7. At first sight, the numerical result (figure 5(c)) does not seem to agree with the 
cm prediction. However, the discrepancy is resolved as follows. For finite lattice systems, 
the conformal invariance is only an approximate symmetry, and the systems are regarded as 
perturbed by irrelevant (and marginally irrelevant) operators 1471. In particular, there is an 
important marginal operator JL(z) J R ( ~ )  made up of Kac-Moody currents around the wzw 
fixed point. It breaks the conformal symmetry of the fixed point and leads to logarithmic 
corrections for physical quantities. 

0 0 8  18 2 O @ h /  
(1L@ In) / ( ( O L 8   OR) 

/ 
1. , ( IL@OR)  

In order to examine whether the numerical spectrum coincides with that of the wzw 
model, we focus on six energy levels (AO, Al), (BO, B1, B2) and C in figure 5(c). The 
numbers 0, 1 and 2 stand for the eigenvalues of Smt. From the relative positions, the 
spin eigenvalues S,, and the degrees of degeneracy of these levels, we guessed that they 
correspond to lhree levels A, B and C in figure 6. If the infinite Kac-Mocdy symmehy is 
unbroken, the levels (AO, AI) and (BO, B1, E2) have to group together into two degenerate 
levels A and B, respectively. Assuming that this splitting of levels is caused by the above 
marginal operator, the energy levels including the logarithmic correction are given by the 
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following formula [48] 

where the quantity g ( L )  denotes the effective coupling constant for the marginal operator 
at the length scale L. For large enough L,  we can replace g ( L )  by its asymptotic form 
d3/4r In L in the above formula. Therefore, we can eliminate the leading-logarithmic 
correction by taking weighted averages of the levels 148,491. 

0.8 0'9 1 

I/&+ 1) 
Figure7. The approximate critical exponents u(L. L t 2) plotted against l / ( L  t 1). 

For L = 12,14,16, we verified that the values obtained in these three ways we close to each 
other. Hence, we can expect that the leading-logarithmic corrections are eliminated in this 
method. Moreover, this would support our prediction, since it is unlikely that the finite-size 
splittings are eliminated by this method for other cm than the SU(2) wzw model. However, 
in order to preserve the precision, we adopt EA(L), which is obtained from the lowest two 
levels, B1 and B2, in the following analysis. The residual splitting may be explained 
by including corrections due to irrelevant operators and the higher-order logarithms like 
1/0n ~ ) 3 .  
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We begin with the 'Fermi velocity'. To estimate it, we adopt the following procedure. 
First, we note that the logarithmic correction in (18) vanishes for the energy level C (provided 
that the spectrum indeed corresponds to the N'zw model), since qt . SFt vanishes for this 
level (see figure 6).  Therefore the slope of the segment joining the ground state and the 
state C gives the desired quantity. From the data for L = 12, 14, 16, we extrapolate the 
quantity U&) = k E , ( L )  by a second-order polynomial in 1/L to obtain 

UF = 1.91. (20) 

This is close to the value obtained in 1721 (after multiplying the factor 1.25 of the 
Hamiltonian) using the quantum Monte Carlo method, while the discrepancy between the 
density-matrix renormalization gmup result 1301 and o m  is rather large. 

Using the numerically evaluated Fermi velocity UP, the scaling dimensions corresponding 
to levels A and B are estimated by extrapolating the following quantities: 

The results are given by 

X A  = 0.51 XS = 1.94. 

These are to be compared with 0.5 (the conformal dimensions of the fundamental field 
g of the WZW model) and 2 (the scaling dimensions of a Kac-Moody descendant field 
~ t - ,  &,I  at level-2). 

We also estimated the central charge f" the ground-state-energy data for L = 
10,12,14,16. Following the standard method [50], we obtained $u,c = 1.107, which 
means c = 1 .lo. Note that the k = 1 wzw model has a central charge of unity. Furthermore, 
this is close to the result of the previous study c = 1.0 f 0.15 [30]. 

The agreement is good for the smallness of the system size. That is, we obtained 
appropriate values of the scaling dimensions and the central charge simply by assuming 
a few qualitative facts expected from the wzw model, the relative positions of the levels 
and the form of the logarithmic corrections (18). Thus the spectrum obtained at J' = .I,' 
is consistent with that predicted on the basis of the k = 1 wzw model. The present result 
does not agree with the prediction of 1291 that the critical theory will be the k = 2 wzw 
model. 

4. Calculation of several critical exponents 

In this section, we report our estimates of the critical exponents v ,  q ~ k l  and qSdog. They 
are defined by the following relations: 

where the quantity m in the first equation denotes the excitation gap. 
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Before describing the numerical results, we predict these exponents using the level-1 
wzw model. We begin by constructing the continuum expression of the string operator. 
First we have to keep in mind that the invariance of the Hamiltonian (1) under translation 
by one site is already broken at the critical point. Hence the usual expression [16,48] 

Si - JL + JR + constant(-1)'Trgu 

(where the 2 x 2-matrix g and a denote the wzw fundamental field and the Pauli matrices, 
respectively) cannot be used. Taking into account the doubling of the unit cell, continuum 
fields have to be defined on two-site cells. Thus we take the spindensity operator as 

and 

Of course, there might be operators with lower scaling dimensions (i.e. more relevant in 
the long-distance behaviour) such as Trgu whose scaling dimension is ID. However, if 
we note the fact that the spatial integral of the spin density 8 gives S,, (which preserves 
the ground-state energy), the possibility of this kind of operator is excluded; in the usual 
antiferromagnets, there is a quickly varying factor (-lr before Trga,  and hence it does 
not contiibute to Stop Replacing the summation by the integration j: du and using 
the operator-product expansion (OPE), we obtain the desired result: 

j -1  

nexp[ifl(S& + S.+l)J(Sij +Si,+]) - :exp 
k= I 

This corresponds to the vertex operator V , w = o , ~ = e , ~ .  which plays the role of a twist 
operatort [51] and is missing from the operator content of periodic systems [45,52]. When 
B = H (the ordinary string 1-point function), our result is consistent with the conclusion of 
Alcaraz and Hatsugai 1531. From the above expression, we readily conclude that the scaling 
dimensions of this operator and the correlation exponent are given by 

respectively. 
Another quantity of physical interest may be the form of the string 1-point function and 

the mass gap in the vicinity of the critical point. To calculate it, we have to know by which 
operator the system is driven away from the (WZW) critical point. We look for such an 
operator U that satisfies the condition of SU(2) invariance i.e. IS,,, 01 = 0. It is important 
to note that, owing to the broken translational invariance, we cannot discard the possibility 
of a operator Trg; it is excluded in translationally invariant system for the reason that it is 
odd under the discrete symmetry g + -g [16]. Taking into account that the operator Ttg 

t When e = n, it changes the boundarj condition for S* to antiperiodic one. 
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is the only relevant operator that satisfies the above condition, we may identify the leading 
contribution to the perturbing fields with Tr 6. 

The operator Trg has the scaling dimension In [41]. Hence a naive expression of 
the mass gap is given by m(A) = A'" [13] (where the coupling constant h is defined 
by JJ' - JJ/J,'). However, as is well known [16,54], an important marginal operator 
JL. JR exists around the WzW fixed point, which yields logarithmic corrections to the 
scaling behaviour [48,SS, 561. Using the formula of 1481, the mass gap with the logarithmic 
correction included is predicted to behave as 

Combining this with the scaling argument, we obtain the string order parameter as 

h(e/n)2/6 
usdn~(e) - 1 lnh((8/X)'/8' 

This implies that the string order parameter 
long-distance limit of the string correlation function G,h, can also be calculated as 

tends to zero when J' -+ J,' + 0. The 

See appendix A for calculational detail. 
We now proceed to a numerical calculation. We use the Lanzcos method, as in section 4. 

The critical exponent U is estimated as follows. According to the finite-size scaling, the 
Binder parameter U may be scaled as 

U ( L ,  J )  = f?(L/c) = U  -[ L (-)"I 
Hence, we obtain the approximate exponent w(L, L + 2) as 

where 

We plot the exponent u(L ,  L + 2)  against the inverse of the system size in figure 7. We 
extrapolate the exponent v as v = 0.75 & 0.05. The agreement with the predicted value U3 
(see(28)) is not so good. However, there is no relevant scaling field that leads to U m 0.75 
in the wzw model, and this discrepancy should be attributed to the finite-size effect and the 
logarithmic dependence of v .  

The critical exponent q ~ a  and qreng are estimated on the basis of the following relations, 
which are valid at the critical point: 
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-_  --  :- 

- --\ ; 
- - 
.-. 

and 

Therefore, the approximate exponents are given by 

where 0, denotes 0" or OString. The values of (38) are plotted against the inverse of the 
system size in figures 8 and 9, respectively. Using two points corresponding to the largest 
two values of L, we can extrapolate the value as 

q ~ & l  = 0.70 rt 0.10 q,bing = 0.25 rt 0.05. (39) 

The estimate of qs,,.ing depends on the evaluation of .I:. We have assumed .I,' to obtain the 
above value. These estimates of the exponent qsbog are consistent with that of the field- 
theoretical prediction qs-g = 1/4. From the above result, it Seems that the logarithmic 
dependence of the string correlation function does not appear. This is probably because 
(lnr)-l/s is a slowly varying function of r, while the present system size is limited to 
L 5 16. 
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I 

U: J2=0.597 
+: J,’=0.601 

0 0.05 0.1 0.15 0.2 

1/ (L+1)  
Figure 9. The approximate critical exponents qm(L. L t 2) against I / ( L  + I )  

The exponent q ~ k l  0.7 differs from the value of unity expected from the S = 112 
Heisenberg chain [57]. However, the staggered correlation function GStl..(r) = ((-1)’S;S;) 
is expected to have a logarithmic correction (Inr)]/’ (see appendix A). This factor is not 
negligible when deriving the approximate exponents by (38). We plotted rGsmg(r) against 
the distance between the two points and found that it is a slowly increasing funaion of r .  
If we regard this behaviour as a consequence of the factor (lnr)l/’, our prediction does not 
contradict the numerical estimates. 

We make the following conclusions. Fmt, we have verified that the string operator 0, 
is expressed as the vertex operator V M = ~ , N = I / ~  (which corresponds to the case 6 = z in 
(26) in the continuum limit. This fact is assumed ad hoc in the previous study [53]. Second, 
the criticality is found to be characterized by the level-I SU(2) WZW model whose central 
charge is equal to one, or equivalently, the free boson model (14) with R = I / d .  Our 
result that the central charge is given by c = 1 is consistent with the numerical studies by 
Kat0 and Tanaka [30], and Yamamoto [72]. 

5. The low-lying excitation and the string order parameters 

In this section, we investigate the excitation spectrum for various values of the alternation 
J’. The spectrum is discussed in conjunction with the CFr prediction and the perturbative 
result described in sections 2 and 3. Hida 1.581 investigated the spectrum of the model for 
the case S = 4. the spectra of the model (1) with S = 112. The peculiar point of the present 
system is that the transition occurs away from the point J‘ = 1. 

First, we show the dispersion relation for J‘ = 0.2, 0.4, 0.6 and 0.8, (the 
antiferromagnetic side), in figure 5. We have chosen the unit of momentum to be 2z/16. 
Note that the doubling of the unit cell reduces the size of the Brillouin zone by half 
(Len = L/2 = 8). Correspondingly, the gap opens not at k = x but at k = 0. The spectrum 
for J‘ = 0 . 2 p  0) shows that the S = 1 single-particle branch is well approximated by the 
formula (8) derived from the first-order perturbation in J’. Hence, we may expect that the 
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elementary excitation around J' = 0 is created by exciting a singlet bond to a triplet one; see 
section 2. In other words, the excitation is an S = 1 magnon rather than a pair of S = 1 f 2  
spinons I20.591 of the integrable Heisenberg chain. The gap decreases as J' increases and 
it closes at J' = J:. At this value, the isolated S = 1 single-particle branch mentioned 
above is absorbed in the continuum of the multiparticle states. Then the degenerate S = 0 
and S = 1 excitations, which actually split in a finite system owing to the logarithmic 
corrections, at k = 0 consist of two massless S = 1 f 2  spinons; a singlet combination of 
them gives the S = 0 excited state and triplet combinations give the S = 1 states. This can 
be understood by the fact that the long-range resonating valence-bond (RVB) state, whose 
excitation is the spinon [60], would be realized at J' = J:. Furthermore, the dispersion 
at the parameter J' = 0.6 JL shows characteristics of the massless model, namely the 
linear dispersion around k = 0 and the conformal tower [47]. We have already discussed 
fhis spectrum in detail in section 3. 

For J' z J:, the gap AH between the singlet ground state (k = 0) and the triplet excited 
state opens at k = 0 and is an increasing function of J' .  The S = 1 single magnon branch 
emerges again and seems to persist for J' = 1. 

Finally, we concentrate on the region J' c 0, i.e. the ferromagnetic side. As was 
explained in section 4, there is no phase transition in the region J' c 0; the dimer phase 
J' X 0 and the S = 2 Haldane phase J' + -00 can be viewed as two special limits of 
the same unique phase. We depict the excitation spectrum for J = -0.1, -0.5 and -1 in 
figure 10. The spectrum for J' = -0.1 shows that the excitation is again well approximated 
by the formula (8) with a negative value of J',  as in the above case J' = 0.2; the excitation 
is identified with an S = 1 massive magnon. The formula (8) also tells us that the first 
exited state is located at k = R with a excitation gap AH; note that it exists at k = 0 in the 
case J' P 0. The other figures for J' = -0.5 and -1 are consistent with our conclusion 
that no phase transition occurs for J' e J,'. Therefore, the elementary excitation of the 
S = 2 Haldane system, which appears as a special limit of our S = 1 model, may be the 
same as that of the S = 1 dimer system at J' = 0, or the excitation is given by the S = 1 
massive magnon. This is consistent with Haldane's original argument 111. 

For J' smaller than -0.23, the single-magnon branch seems to be absorbed in the 
multiparticle continuum. This situation is similar to what is well known in the ordinary 
S = 1 Heisenberg chain [6163]. The estimate J' = -0.23 is close to the value -0.25 
predicted by the perturbative formula (8). Probably because of the finite-size effect, the 
lower edge of the multiparticle continuum at k = 0 is slightly larger than twice the gap 
AH at k = II. Assuming that main features of the spectrum for J' c 0 persist even in the 
limit J' + 00, we can expect that the S = 1 Haldane system and the S = 2 system are 
essentially the same, at least with respect to the spectral property. 

Next, we discuss the Haldane-dimer transition in conjunction with the string order 
parameter. The string order parameter [24,25] defined by 

has proved to be useful in detecting the Haldane phase in S = 1 chains and has been 
extensively studied both analytically and numerically [38,64-67]. Hence it is interesting to 
investigate how it changes at the Haldandimer transition. In the following, we also adopt 
a modified definition of the string order parameter: 
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Following Oshikawa [64] and Hida [68], we have adopted a generalized version of the string 
order parameter obtained by choosing a general angle 0 instead of x .  As was discussed 
in [HI and [28], OSkng(B) may give some clues to characterizing the phases despite lack of 
a complete justification of.its relevance. In the ferromagnetic limit (J'  -+ -00). it reduces 
to the string order parameter for spin-2S variables [IO]. We can compute the quantity 
O,hng(B) using the matrix formalism [28,69] for the two phases (the S = 1 VBS and the 
dimer) on the both sides of the Haldane-dimer line. The result is given as follows: 

S = 1 VBS state Kss'n 1 6 ,  2 1  ie 
$ sin' 0 S = 1 dimer state. 

Og!Og(0) = 

It is important to note that their 0 dependence is quite different That is, the string order 
parameter for 0 = II is non-vanishing for the vBS phase, while it is zero in the dimer 
phase. Moreover, the 0 dependence of O,~,,(O) in the S = 1 dimer phase (namely, the 
double-peak shuchlre) is the same for the one evaluated for the S = 2 VBS state. (This can 
be generalized to higher4 cases, where the same B dependence is obtained both for the 
spin-2s VBS state and for the sp in3  dimer state.) Of course, the above calculation is based 
on the variational solution obtained in section 2 and the functional form of Useng(@) does 
not change in each phase. This is somewhat unrealistic. However, assuming that the global 
structure of Os,,(@) is invariant in each phase of the true (not variational) solution, we can 
conclude that a drastic change in the 0 dependence of the string order parameter does occur 
at the Haldane-dimer transition. For J' < JL,  os^@) becomes to show qualitatively the 
behaviour in the S = 2 VBS state; there are. two nodes at 0 = 0, x and two peaks are located 
at 0 = r /2 ,  3x12. We may regard these results as a strong support for the correctness of 
the viewpoint that the spin4 Haldane phase is essentially the same as the spin-S/2 dimer 
phase [IO]. 

We now show the numerical result of two types of the general B string order parameter, 
(I) and @). for system size L = 12. For (I): 

and for @): 

The difference between them for the S = 1/2 case is discussed in PO]. They are plotted 
in figures ll(u) and ll(b), respectively, for J = -10, 0.1, 0.6 and 1. We have not 
yet succeeded in finding the best order parameter. Nevertheless, we may expect that the 
generalized string order parameter O,ti,(0) characterizes the nature of the phases in some 
aspects. The plots behave differently in the two phases J' < JL and J' > JL. In the former, 
the curve has a single maximum at B = x ,  while in the latter the maxima are located 
near 0 = $ and 0 = $. That is, the qualitative feature of the string correlator changes 
drastically. This agrees with the prediction based on a simple variational calculation. 

The importance of the number of nodes of the string correlator in characterizing the 
Haldane phases was first pointed out by Oshikawa [64]. In this sense, the drastic change 
observed above reflects the qualitative difference between the two phases. The remarkable 
point is that we can also observe the equivalence between the S = 2 Haldane phase 
(J' = -00) and the trivial dimer phase (J' ~ c i  0) from the point of view of the string 
correlation function. 
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0 
Figure 11. The generalized string correlations, O-(b'. L/2)  (a) and o:,,(a. L/2) (b). 
plotted against E for lhe parameters 3' = -10,O.l. 0.6, and 1. 

6. Summary and discussions 

In the present paper, we have studied the S = 1 isotropic spin chain with bond alternation 
(2). both analytically and numerically. With use of a simple variational wavefunction, we 
have reproduced the phase diagram for the model (2), which is qualitatively correct. Based' 
on this argument, we have predicted that the qualitative change in the string correlation 
occurs at the Haldane-jimer transition. We also studied the model ( I )  for the Heisenberg 
point p = 0 numerically and determined the transition point precisely with the combined 
use of finite-size scaling and the Binder parameter defined for the non-local order parameter. 
Our method yields a more precise determination of J,' than do other methods (for example, 
the direct observation of the gap), despite the smallness of the system size. The fact that our 
method has worked well implies that the 6 = z string order parameter in the infinite-volume 

' 
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limit actually vanishes for J' i J,'. 
The observation of the excitation gap tells us that the phase transition OCCUIS only once 

in the region -m e J' e 1 and furthermore that the rather trivial dimer phase ( I '  TYY 0) 
is smoothly c o ~ e c t e d  to the non-trivial S = 2 Haldane phase (J' -+ -w). A similar 
situation has been observed for the S = 112 alternating chain. We have thus established 
the equivalence between the dimer phase and the Haldane phase for S = I(+ 112) and 
S = 2 ( t  l), namely both for S odd and for S even. From our viewpoint, the vanishing of 
the 8 = II string order parameter for S = even [64] corresponds to the fact that it vanishes 
for the S = 1 dimer phase. Note that it is impossible to regard chains with half-odd integer 
S as a limit of a certain dimer system. This is in great conmst to the integer-S chains. 

We have predicted that the phase transition that separates the S = 1 Haldane phase and 
the dimer phase is described by the k = 1 SU(2) wzw model; this prediction is consistent 
with the previous field-theoretical [ 161 and numerical [30] studies. The prediction for several 
exponents was also given. Although there are severe logarithmic corrections for correlation 
functions and so on, the numerical estimates do not contradict our prediction. 

A close examination of the spectrum of the model (1) showed that the elementary 
excitation is given by the massive triplet magnon, except at the critical point JL. This is 
consistent with Haldane's conjecture. 

At the critical point, the spectrum shows the characteristics of the relativistic massless 
theory at low energies. We have confirmed that our spectrum does not contradict the CFT 
prediction of section 3. It is well known [60] that the spinon is a physical excitation in the 
long-range RVB picture and that the k = 1 SU(2) WZW model can be interpreted in terms of 
the S = 112 spinons. Thus the elementary excitation at JL is expected to be given by the 
S = 112 spinon. 

It would also be interesting to explore the higher-spin case. In this case, we can imagine 
several kinds of intermediate states between the VBS state and the dimer state. For example, 
in the S = 2 case, there exists an intermediate phase: the inhomogeneous VBS state where the 
number of valence bonds alternates like 1,3. 1,3, . . . in a region including the Heisenberg 
point at least within a variational calculation [71] similar to the one in section 2. The phase 
transition occurs twice, in agreement with the conjecture by AfReck and Haldane [16]. The 
above-mentioned RVB picture suggests that the critical theory governing the transitions is 
also the level-] SU(2) wzw model, where the S = 112 spinon is a natural excitation. This 
speculation is supported by a field-theoretical argument [39]. We do not know what kind 
of order parameters can distinguish the intermediate phase from the Haldane phase. 
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Appendix A. Calculation of the correlation functions 

In this appendix we sketch the calculation of the correlation functions in same detail, mainly 
to establish the notation. For an account of the basic formulation, see 1481. 
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In general, the presence of the perturbing fields at the fixed point leads to a correction 
to the scaling behaviour. When the perturbation is irrelevant or marginal, the following 
formula for the scaling dimension xi holds [47]: 

Yik) = xi + 2ncviig(L) (-41) 

where Cvii and g ( L )  denote the coefficient appearing in the operator-product expansion 

and the running coupling constant, respectively. 
In the following, we are interested in the marginal perturbation 

where [ J L ~ }  stand for the Kac-Moody currents 

In order to integrate the renormalization-group equation (RGE), it is necessary to know the 
long-distance behaviour of g(L). Since V is a marginal perturbation, the p function for 
g ( L )  is given by 

which is integrated to yield [48] 

If the initial coupling constant satisfies go < 0, V is a marginally irrelevant perturbation 
and causes logarithmic corrections to the critical behaviour. 

Using the long-distance asymptotics of g(L) (which is obtained by ignoring the term 1 
in the denominator of (A4)) and integrating the RCE for two-point functions, we obtain [48] 

(A51 1 JSCW (bii(r)bi(O)) - . 

If the OPE coefficient Cvii vanishes, the logarithmic correction does not appear. 
The coefficients Cvii can be calculated straightforwardly and yield the following results: 

for JGR (xi = 1) l o  - ( e / x ) 2 / 8 A  for the string operator (xi  = (e/n)2/8). 
Cvii= 1/2& for Trgu (xi = 112) (A61 

Putting them into the above formula for two-point functions, we obtain the desired results. 
The vanishing OPE coefficient Cvii for the Kac-Moody currents implies that the current- 
current correlator has no logarithmic correction. 
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